
1

Using Python to Read Data Products from the
Global Precipitation Measurement (GPM) Mission

The Precipitation Processing System at NASA Goddard
 https://arthurhou.pps.eosdis.nasa.gov/

Updated: 25 January 2022
by Owen Kelley (Owen.Kelley@nasa.gov)

Caption: A Python visualization of data from an HDF5 file containing precipitation retrievals
calculated from observations made by the GPM Microwave Imager (GMI). The image shows an
overflight of Hurricane Irene in the Gulf of Mexico on 29 August 2021 at 1514 UTC, at the time
that the hurricane was about to make landfall in Louisiana. Because rainfall rates are typically
logarithmically distributed, the colors are defined by the log base 10 of rainfall rate (i.e., 0 and 1
in the color bar correspond to rainfall rates of 1 and 10 mm h-1, respectively).

2

Contents

1. Introduction ... 3

2. Download Data and Sample Program ... 4

3. Reading Data from HDF5 Files ... 5
3.1. Reading HDF5 Files with the Sample Program ... 5
3.2. Reading HDF5 Files with h5py .. 8

4. Reading Geolocation from HDF5 Files ... 9
4.1. Reading Geolocation from a Grid File ... 9
4.2. Reading Geolocation from a Swath File ... 10

5. Reading Observation Date and Time from HDF5 Files .. 11
5.1. Reading Datetime from a Grid File .. 11
5.2. Reading Datetime from Swath File .. 12

6. Reading NetCDF4 and GeoTIFF Grid Files .. 12
6.1. IMERG 24-hour Average Stored in a NetCDF4 File 12
6.2. IMERG Accumulation Stored in a GeoTIFF and WorldFile 13

References and Websites ... 14

3

1. Introduction
 NASA's Global Precipitation Measurement (GPM) core satellite carries a radar and a
passive microwave instrument and has been in Earth orbit since February 2014 (Hou et al. 2014).
GPM standard data products are written the HDF5 file format, although some GPM-derived
products are written in the NetCDF4 or GeoTIFF format. All of these formats can be read with
Python, a high-level programming language that is popular among scientists. The present
document gives tips on how to use Python to read GPM data, the time the observations were
made, and the data's geographic location. This document is intended for people who are familiar
with Python but not necessarily HDF5 or GPM.

 GPM data may possess one of two geometries: swath or grid. A swath file contains the data
collected by a satellite instrument as the satellite orbits once around the Earth. In a swath file, the
latitude and longitude are stated explicitly for each of the instrument's fields of view. The
latitude and longitude stated is the field of view's center point on the Earth ellipsoid. By
convention, GPM data products state location on the Earth ellipsoid even if the instrument
collects information along a slant path through the atmosphere. A grid file contains arrays with at
least two dimensions, one of which represents latitude and another of which represents longitude.
In contrast to a swath file, a grid file contains averages or accumulations of values from multiple
swaths, usually over a month-long period. Swath and grid files are discussed in separate sections
in the present document. The sample Python program also contains separate functions for
reading swath and grid files.

 The most widely used GPM data product is a gridded product called IMERG, which stands
for "Integrated Multi-satellitE Retrievals for GPM." IMERG combines data from multiple
satellites and other data sources to create a global estimate of surface precipitation rate in
millimeters per hour. The IMERG algorithm outputs HDF5 files covering either 30 minutes or
one month, with the record extending from June 2000 to the present. IMERG's 1800-by-3600-
element grid covers the globe at 0.1º´0.1º resolution. The highest-quality estimates are
calculated several months after the satellite observations are made (Final IMERG). In near real
time, a simplified version of the algorithm runs using the data that are available that quickly
(Early IMERG and Late IMERG) (Huffman et al. 2019).

 While the direct output of the IMERG algorithm is written in the HDF5 format, there are
IMERG-derived products written in the NetCDF4 or GeoTIFF formats. For many years, HDF5
was one of the formats that NASA recommended for storing Earth-observing data, but recent
high-level guidance from NASA suggests that NetCDF4 and GeoTIFF are now preferred (DPDG
Working Group 2020). The Goddard DAAC (i.e., the Goddard Earth Sciences Data and
Information Services Center, GES DISC) creates an IMERG-derived product stored in the
NetCDF4 format. These NetCDF4 files contain a 24-hour average of the standard 30-minute
precipitation estimates generated by the IMERG algorithm. The Precipitation Processing System
(PPS) at NASA Goddard produces an IMERG-derived data product that is stored in the GeoTIFF
format. These GeoTIFF files contain 30-minute, 3-hour, 24-hour, 3-day, 7-day, or 1-month
averages of the estimates generated by the IMERG algorithm.

4

 While the present document focuses exclusively on Python, Python is not necessarily the
best language in all situations. Three general options for reading GPM files include a low-level
language (C or FORTRAN), a high-level language (IDL, Matlab, or Python), or a Geographic
Information System (GIS) such as QGIS or ESRI ArcGIS (https://qgis.org; https://esri.com). The
advantage of a high-level language is that fewer lines of code need to be written, compared to a
low-level language. The rest is a matter of opinion (Lutz 2013, pp. 21–22). Python is a high-level
language with the advantage that it is free to use. High-level languages for which you purchase a
license (e.g., IDL and Matlab) have a reputation for being stable, being easy to install, and
providing tech support. Between 2008 and 2020, Python had two somewhat-incompatible
versions concurrently in widespread use, Python 2 and Python 3 (Lutz 2013). Only Python 3 is
supported now, but there is concern that significant changes in each major release of Python 3
might break Python libraries that many researchers rely on (Lutz 2020).

 The numpy, matplotlib, h5py, NetCDF4, PIL, and datetime libraries must be installed in
your copy of Python for some functions in the sample Python program to read GPM data
products as described in the present document. One way to install Python 3 and some or all of
the needed libraries is to install the free Anaconda distribution of Python 3. For Linux or Mac
users, determine if you have Python 3 installed and in your path by typing python on the
command line. For Microsoft Windows users, type python or anaconda in the search field in or
near the Start menu.

 A few disclaimers are worth mentioning. The Python libraries used in this tutorial might not
run in future versions of Python, and it is beyond the control of the author if that occurs. The
Python libraries used in this tutorial are not necessarily the best or most stable ones. They are,
however, adequate for illustrating the logical structure of the GPM data, and they at least suggest
the steps that are needed to read and interpret GPM data products. NASA reprocesses GPM data
every few years with improved science algorithms, and in a future reprocessing, the names of
variables in the data products may change. It is possible that this document will state a different
variable name than in the version of GPM data products that you are examining.

2. Download Data and Sample Program
 The code examples in the present document are based on a Python program that can be
downloaded from the PPS website. To obtain this Python program and the sample data files that
it reads, visit https://gpmweb2https.pps.eosdis.nasa.gov/pub/THOR/python and download the file
called gpmPython.zip. On a Linux or Mac system, type unzip gpmPython.zip to extract the
files from the *.zip file. On a Windows system, right click on the *.zip file and select "extract
files." Below are the contents of the gpmPython.zip file:

5

2A.GPM.GMI.GPROF.20210829-S151345-E151504.042624.V05B.subset.HDF5
2A.GPM.Ku.V9.20211203-S003806-E004322.044108.V07A.subset.HDF5
3B-DAY-GIS.MS.MRG.3IMERG.20210519-S000000-E235959.4140.V06B.tfw
3B-DAY-GIS.MS.MRG.3IMERG.20210519-S000000-E235959.4140.V06B.tif
3B-DAY.MS.MRG.3IMERG.20210519-S000000-E235959.V06.nc4
3B-HHR.MS.MRG.3IMERG.20210519-S000000-E002959.0000.V06B.HDF5
gpm.py
gpmPythonNotes.pdf

The first two of the data files contain single-instrument rainfall estimates from the main GPM
instruments: the Dual-frequency Precipitation Radar (DPR) and the passive microwave
radiometer called the GPM Microwave Imager (GMI) (Hou et al. 2014). To keep the *.zip file
from becoming too large, these DPR and GMI files are subsets of the original full-orbit HDF5
files that are stored in the GPM online archive. These subsets are geographically smaller (they
contain less than a full orbit of data), and they contain only a sample of the variables in the
archived files. These two subsets were generated using the subset capability of the PPS data
ordering system that is called STORM (http://storm.pps.eosdis.nasa.gov).

 In addition, the gpmPython.zip file contains three formats of the IMERG multi-satellite
precipitation data product. These formats are a GeoTIFF file, a NetCDF4 file, and an HDF5 file.

 Once you have finished running the program on the sample data files, you may wish to
download other GPM data files from the online archive hosted by PPS. Before doing so, register
your email address with PPS by going to this URL: http://registration.pps.eosdis.nasa.gov/. Once
registered, visit https://jsimpsonhttps.pps.eosdis.nasa.gov/ to download near real-time GPM
HDF5 files, or visit https://arthurhouhttps.pps.eosdis.nasa.gov/gpmdata/ to download research-
quality GPM HDF5 files. These download sites can be accessed using a web browser or the
Linux wget and curl commands. If using a web browser, type in your just-registered email
address when prompted for a username and password. Alternatively, the same GPM HDF5 files
can be downloaded from the online archive hosted by the Goddard Earth Sciences (GES) DISC:
https://earthdata.nasa.gov/eosdis/daacs/gesdisc.

3. Reading Data from HDF5 Files

3.1. Reading HDF5 Files with the Sample Program
 Start a Python 3 session. On a Linux system, type python on the command line. On a
Microsoft Windows system, one may start a Python session using the Start menu.

 Load the gpm.py sample program by typing import gpm on the Python interactive prompt.
This Python source file is one of the items in the gpmPython.zip that is available for download
from the PPS website as described in the previous section. Once the gpm module is loaded with
the import command, one can type help(gpm) to obtain information about the functions in that
module.

6

 Using a text editor, examine the contents of the testRun() function near the bottom of the
gpm.py Python source file. One may pick commands from testRun() to run interactively,
remembering to prefix their names with gpm and a period. For example, to run the readSwath()
function, one would type gpm.readSwath(fileName,varName,swath) on the Python
interactive command line. In preparation, one would define the two input variables, fileName
and varName, and initialize the swath output variable as an empty dictionary using the command
swath={}. Alternatively, run the entire suite of tests by typing gpm.testRun() on the
interactive Python command line. When executing gpm.testRun(), Python plot windows will
pop up. Such a window should be dismissed in order to advance to the next test.

 Python has several functions for examining objects. The help() and type() functions
work on variables, functions, and other objects. To list the methods and attributes of an object,
some Python environments will allow you to type the name of that object on the interactive
Python command line followed by a period and then hit the tab key twice rapidly. This feature is
similar to the command-line completion feature provided by many Linux shells.

 There are many ways to modify a Python source file, including integrated development
environments (IDEs), source-code editors, and simple text editors. The simplest solution would
be to use the vi text editor under Linux and MacOS or to use a text editor like WordPad under
Microsoft Windows. After editing the source file, load the modified code by typing
importlib.reload(gpm) on the Python interactive command line. In Python 3, the reload()
function becomes available only after executing import importlib.

 The gpm.readSwath() function in the gpm.py program reads data and the associated
latitude and longitude, returning them in a Python dictionary called swath. The swath dictionary
can then be passed to the gpm.plotSwath() function. The images generated from the GMI and
DPR swath files are shown in Figure 1.

 (a) (b)

Fig. 1. Python display of GPM single-instrument HDF5 files created by the
gpm.plotSwath() function in the gpm.py sample program. (a) GMI surface
precipitation rate (millimeters per hour). (b) DPR surface precipitation rate (mm h-1).

7

 The grids in GPM data products either cover the whole globe or just 70°S to 70°N. The
gpm.readGrid() function reads a specified grid variable and gpm.plotGrid() displays it
graphically.

Fig. 2. Python display of the GPM multi-satellite product called IMERG, created by the
gpm.plotGrid() function in the gpm.py sample program. The display is the base-10
logarithm of 30-minute averaged rainfall rate (mm h-1).

 The GPM file specification document names all of the variables in GPM HDF5 files. To
access them in Python (or in IDL or Matlab for that matter), it can be helpful to know the
absolute path to the variable. The GPM file specification is available as a PDF file from the PPS
website, https://arthurhou.pps.eosdis.nasa.gov/. The absolute path is usually the name of a group
or groups followed by the name of a variable, such as /S1/Latitude. To list the absolute path
for all datasets in an HDF5 file, use gpm.listContents()from the sample gpm.py Python
program. The one mandatory argument is the name of the HDF5 file to be examined. If only one
argument is provided then the output is sent to the screen. If the name of an output text file is
provided as an optional second argument, then the list of variables is printed to that file.

 When editing the sample program, it may be helpful to insert "pauses." In other words, a
place where the program states the current location in the source file, the program pauses
execution, and the program returns control to the interactive Python command line. The
program's local variables are available for examination. To insert such a pause, use the following

8

Python commands:
import code
import traceback
traceback.print_stack(limit=1)
code.interact(local=locals())

When one has finished the examination from the interactive prompt, one can resume the
program's execution by typing the following command on the Python interactive command line:
control-d on Linux and MacOS or control-z on Microsoft Windows. This sort of pause is
analogous to the functionality of the "stop" command that can be inserted in source code of a
program written in the Interactive Data Language (IDL) and the ".con" interactive IDL
command.

3.2. Reading HDF5 Files with h5py
 Once you know the full path to the HDF5 variable that you want to read, reading it in
Python take just a few lines of code: import the h5py library, open the file, and read the variable.
For example, to read the GMI surface precipitation estimate from a 2A GPROF GMI HDF5 file,
one would store the file's name in the fileName variable and execute these lines of code:

import h5py
import numpy
fileHandle = h5py.File(fileName, 'r')
data = numpy.array(fileHandle['/S1/surfacePrecipitation'])

It is tempting to think of the objects returned by h5py's fileHandle[varName] as an array but
actually it is an HDF5-specific object type (Collette 2013, Chap. 3). The numpy.array()
function call converts the object into a numpy array, which is usually a good idea because numpy
arrays "play nice" with many other Python functions used in data analysis. Some numpy
functions will work on the object returned by h5py. For example, dimensions and other
characteristics can be printed in the following way:

data.shape
import numpy
numpy.amin(data)
numpy.amax(data)
numpy.median(data)
numpy.mean(data)

However, if one types type(data) or just data on the interactive Python prompt, the output
reveals that the object is not a numpy array if one is looking at the direct output of h5py's
fileHandle[varName]:

<HDF5 dataset "surfacePrecipitation": shape (229, 221), type "<f4">

If one subsets an HDF5 dataset, the h5py function returns a pure numpy array. For example, a
subset operation that takes every tenth element of an HDF5 dataset, i.e.,

9

type(data[::10,::10]), will return <type 'numpy.ndarray'>.

 Another common operation that researchers perform on data read from GPM HDF5 files is
to see what fraction of a variable exceeds a particular threshold. For example, one might want to
determine what fraction of observations in an array were determined to have zero rain rates and
what fraction had heavy rain of equaling or exceeding 10 millimeters an hour. The following two
Python statements calculate such fractions.

print('fraction of elements equal to 0: ', \
 1.0* numpy.sum(numpy.equal(data, 0)) / numpy.size(data))
print('fraction of elements greater than or equal to 10: ', \
 1.0* numpy.sum(numpy.greater_equal(data, 10)) / numpy.size(data))

To make a quick plot of a numpy data array, the matplotlib library's pyplot module can be used. To
get a meaningful plot, one does need to use care in the handling of the missing data values common
in GPM variables. The missing data values are often large negative numbers, such as -9999.0. Use
the following Python commands:

import matplotlib.pyplot as plt
import numpy
-- replace missing data value
missing = numpy.amin(data)
missingInImage = -1
image = numpy.where(data==missing, missingInImage, data)
-- display data
plt.imshow(image)
plt.show()

4. Reading Geolocation from HDF5 Files

4.1. Reading Geolocation from a Grid File
 The grid boxes in a GPM grid file are regularly spaced in latitude and longitude. Such a
grid can be plotted on a map given merely the ranges of latitude and longitude covered by the
grid. In some GPM grid files, each grid box covers a 5º latitude by 5º longitude area, while in
other GPM grid files, each grid box is 0.1º ´ 0.1º.

 GPM grid arrays either cover the entire globe or cover a range of latitude, such as 70ºS to
70ºN. The latitude and longitude ranges are stated in the GridHeader annotation written to the
HDF5 group that holds the variables of that grid. The grid folder is a top-level object in the
HDF5 file. In an IMERG HDF5 file the grid folder is called /Grid. To read the gridHeader
from an IMERG file, store the name of the HDF5 file in a string variable called fileName. Then
execute the following Python commands:

10

gridName = '/Grid'
-- read from file
with h5py.File(fileName, 'r') as fileHandle:
 GridHeader = fileHandle[gridName].attrs['GridHeader'].decode('utf-8')
-- convert from one long string to a dictionary of parameters
GridHeader = GridHeader.split(';\n')[0:-1]
GridHeader = dict(nameValue.split('=') for nameValue in GridHeader)

The resulting GridHeader dictionary contains the following elements for an IMERG HDF5 file.
In this printout, extra white space is added for readability.

{'BinMethod': 'ARITHMETIC_MEAN',
 'Registration': 'CENTER',
 'LatitudeResolution': '0.1',
 'LongitudeResolution': '0.1',
 'NorthBoundingCoordinate': '90',
 'SouthBoundingCoordinate': '-90',
 'EastBoundingCoordinate': '180',
 'WestBoundingCoordinate': '-180',
 'Origin': 'SOUTHWEST'
}

In addition to the information in the GridHeader annotation, the latitude and longitude ranges of
GPM gridded datasets are stated in the GPM file specification document that is available on the
PPS homepage, https://arthurhou.pps.eosdis.nasa.gov/. For the IMERG HDF5 half-hour and
monthly files, and no other GPM data product, there is a third way to obtain the geographic
information needed to plot the grid on a map. Specifically, IMERG HDF5 files contain one-
dimensional lat and lon arrays that store the center of each grid box's latitude and longitude.

4.2. Reading Geolocation from a Swath File
 For each array in a GPM swath file, there are variables called Latitude and Longitude
associated with it. A GPM swath file may contain multiple variables called Latitude and
Longitude. The appropriate Latitude and Longitude variables are either located in the same
HDF group that contains a swath array or in the parent group of that HDF5 group. The
gpm.readSwath() function of the gpm.py Python program checks both of these places for
arrays called Latitude and Longitude. The gpm.readSwath()function stores these two arrays
along with the data of interest in a Python dictionary named swath. The Python command to
create the dictionary is as follows after the lat, lon, and data arrays have been created:

swath = { 'lat': lat, 'lon': lon, 'data': data }

One would access one of the elements of the swath dictionary, such as the latitude element, with
the following syntax:

swath['lat']

11

5. Reading Observation Date and Time from HDF5 Files

5.1. Reading Datetime from a Grid File
 While a GPM swath file has a separate datetime stamp for each scan in the file, a GPM grid
file has a single datetime range that defines the period covered by the data in that file. A scan is a
row of instrument fields of view that are oriented approximately perpendicular to the satellite's
direction motion as it orbits around the Earth. All GPM HDF5 files, whether swath or grid, have
a file annotation called FileHeader that states the start and end datetime range for the data in the
file. For a file whose name is stored in the fileName string variable, the code for reading this
datetime range is as follows:

import h5py
read from file
with h5py.File(fileName, 'r') as fileHandle:
 FileHeader = fileHandle.attrs['FileHeader'].decode('utf-8')
-- convert from one long string to a dictionary of parameters
FileHeader = FileHeader.split(';\n')[0:-1]
FileHeader = dict(nameValue.split('=') for nameValue in FileHeader)

The contents of the FileHeader string includes these two parameters, shown here with a sample
value:

StartGranuleDateTime: 2021-05-19T00:00:00.000Z
StopGranuleDateTime: 2021-05-19T00:29:59.999Z

 IMERG HDF5 files, and no other GPM data products, contain a one-element time array
that states the start datetime covered by the IMERG grid file. The value has units of seconds
since the Unix epoch 1 January 1970 0000 UTC.

import h5py
import numpy
with h5py.File(fileName, 'r') as fileHandle:
 startSecondsSince19700101 = numpy.array(fileHandle['/Grid/time'])[0]

As described in a subsequent section, the Goddard Earth Sciences (GES) DISC creates an
IMERG-derived NetCDF4 file storing a 24-hour average precipitation rate. That NetCDF4 file
contains a time array that is read somewhat differently because it is stored in the NetCDF4
format and because its units are days not seconds:

from netCDF4 import Dataset
with Dataset(fileName, 'r') as fileHandle:
 startDaysSince19700101 = numpy.array[fileHandle['time'])[0]
startSecondsSince19700101 = 24.0 * 60.0 * 60.0 * startDaysSince19700101

Once you have calculated seconds since the start of the Unix epoch, it is just one more step to
creating a Python datetime object.

import datetime
startDatetime=datetime.datetime.utcfromtimestamp(startSecondsSince19700101)

12

5.2. Reading Datetime from Swath File
 For a GPM swath file, each scan within the file has its own datetime. Depending on the
instrument, each scan has a duration that may be somewhat less than a second or several seconds.
The fields of view in a single scan form a line on the Earth's ellipsoid, almost always oriented
approximately across the satellite's direction of motion. The datetime of each scan is stored in the
variables in the scantime group of the HDF5 file. The datetime stored in GPM HDF5 files is
stored in UTC time. In GPM swath files, the scan's datetime is stored in the variables Year,
Month, DayOfMonth, Hour, Minute, Second, and MilliSecond. To read the seconds of the hour
in the first swath of a 2A GPROF GMI HDF5 file, use the following Python commands:

import h5py
import numpy
with h5py.File(fileName, 'r') as fileHandle:
 secondsOfHour = numpy.array(fileHandle['/S1/ScanTime/Second'])

6. Reading NetCDF4 and GeoTIFF Grid Files
 The standard GPM data products have been written in the HDF5 format since the launch of
the GPM satellite in 2014, but some derived products are written in the NetCDF4 or GeoTIFF
format. In particular, NetCDF4 and GeoTIFF are used to store averages or accumulations that are
derived from the IMERG HDF5 files. The *.zip file mentioned in Section 2 contains IMERG
data stored as a NetCDF4 file and GeoTIFF. The gpm.py Python program contains the
readDAACdailyIMERGinNetCDF() and readIMERGtiffPPS() functions for reading these two
formats.

6.1. IMERG 24-hour Average Stored in a NetCDF4 File
 As of 2022, Anaconda Python 3 does not include the NetCDF4 module. It can be installed
in the following way: conda install -c anaconda netcdf4. After installation, use it in the
following way:

from netCDF4 import Dataset
import numpy
grid = {} # empty dictionary
with Dataset(fileName, 'r') as fileHandle:
 grid['data'] = numpy.array(fileHandle['precipitationCal'])
 grid['lat'] = numpy.array(fileHandle['lat'])
 grid['lon'] = numpy.array(fileHandle['lon'])
 grid['time'] = numpy.array(fileHandle['time'])
 grid['FileHeader'] = fileHandle.getncattr('FileHeader')
grid.keys()

The one-element time array of the DAAC-created NetCDF4 file stores the start date of the
observations in the file. The date has units of days since the Unix epoch of 1 January 1970 0000
UTC. To convert this date to a Python datetime object, use the following Python commands:

13

import datetime
startDaysSince19700101 = grid['time'][0]
startSecondsSince19700101 = 24.0 * 60.0 * 60.0 * startDaysSince19700101
startDatetime=datetime.datetime.utcfromtimestamp(\
 startSecondsSince19700101)

By using the factor of 24´60´60 for seconds per day, the above calculation of
startSecondsSince19700101 assumes two things: no leap seconds occurred between 1
January 1970 and the present and the correct number of leap days are included in the value of
startDaysSince19700101. Datetime calculations performed by common Linux, C, and Python
libraries, such as the Python datetime library, generally make both of these assumptions. One can
verify these facts for the case of the Python datetime function by seeing that the following
Python commands produce an output of 2020-01-01 00:00:00.000000:

import datetime
daysBetween1Jan1970and1Jan2020 = 18262.0
secondPerDay = 24.0 * 60.0 * 60.0
datetime1Jan2020 = datetime.datetime.utcfromtimestamp(\
 secondPerDay * daysBetween1Jan1970and1Jan2020)
print(datetime1Jan2020.strftime('%Y-%m-%d %H:%M:%S.%f'))

While 27 leap seconds have occurred between the start of the Unix epoch and the start of 2020,
the above code snippet demonstrates that the Python datetime library performs its calculations as
if no leap seconds had occurred. Incidentally, the number of days (18,262) used in this example
calculation was obtained from the IDL expression julday(1,1,2020,0,0,0) -
julday(1,1,1970,0,0,0).

 Alternatively, one can obtain the start date of a GPM 24-hour IMERG NetCDF4 file by
examining the grid['FileHeader'] string that Python reads from the file's FileHeader file
annotation.

6.2. IMERG Accumulation Stored in a GeoTIFF and WorldFile
 The detailed documentation of the IMERG accumulations stored in GeoTIFF files is
available in the IMERG GIS data product documentation, which can be downloaded form this
URL: https://arthurhou.pps.eosdis.nasa.gov/Documents/README.GIS.pdf. That document
describes how to read the IMERG GIS product in Python and in other languages. The following
paragraphs provide an abbreviated explanation focused on Python.

 The simplest way to read a GeoTIFF in Python is to read it as if it were a simple TIFF file
and then read the separate WorldFile to obtain the needed geographic metadata. The Python PIL
library can read data from a TIFF file. The gpm.py program uses this approach, which in brief is
the following Python code:

14

from PIL import Image
fileHandle = Image.open(fileName)
grid = {} #create empty dictionary
grid['data'] = numpy.array(fileHandle)
grid['data'].shape

 PPS stores geographic metadata inside the GeoTIFF file, but PPS also stores the same
metadata in a simpler-to-read format outside of the GeoTIFF file. Specifically, for each GeoTIFF
file that PPS creates, PPS also creates an ESRI WorldFile. A WorldFile is a small text file that
contains geographic metadata (https://en.wikipedia.org/wiki/World_file). The gpm.py Python
program contains a function called readWorldFile() for reading WorldFiles. For a GeoTIFF
with file extension of *.tif, the associated WorldFile has an identical name except for a file
extension of *.tfw. The following lines of Python code calculate the latitude range, longitude
range, and resolution of a grid based on the contents of a WorldFile and the shape of the numpy
array read in the code snippet above using the PIL library:

shape = grid['data'].shape
-- read worldfile and make contents a Python array
with open(worldFileName) as fileHandle:
 record = fileHandle.readlines()
worldFile = [float(oneRecord) for oneRecord in record]
-- calculate the range and resolution of the grid
dLon = abs(worldFile[0])
dLat = abs(worldFile[3])
minLon = worldFile[4] - dLon/2
maxLat = worldFile[5] + dLat/2
numLat = shape[0]
numLon = shape[1]
minLat = round(maxLat - dLat*numLat, 2)
maxLon = round(minLon + dLon*numLon, 2)
maxLat = round(maxLat, 2)
minLon = round(minLon, 2)
print(minLat, maxLat, minLon, maxLon)

A third option for obtaining geographic metadata is to read the file specification document for
the IMERG HDF5 files and IMERG GIS files, both available on the PPS website,
https://arthurhou.pps.eosdis.nasa.gov/.

References and Websites
Anaconda: Python distribution. https://anaconda.org/.
Collette, A., 2013: Python and HDF5. O'Reilly Media, Inc. [Available in hardcopy or through

http://safaribooksonline.com]
Data Product Development Group (DPDG) Working Group, July 2020: Data Product

Development Guide for Data Producers. NASA, report ESDS-RFC-041,

15

https://cdn.earthdata.nasa.gov/conduit/upload/14909/ESDS-RFC-041.pdf.
Hou, A. Y., R. K. Kakar, S. Neeck, A. A. Azarbarzin, C. D. Kummerow, M. Kojima, R. Oki, K.

Nakamura, and T. Iguchi, 2014: The Global Precipitation Measuring Mission. Bulletin Am.
Meteorological Society, May 2014, 701-722, doi: https://doi.org/10.1175/BAMS-D-13-
00164.1.

Huffman, G. J., D. T. Bolvin, D. Braithwaite, K. Hsu, R. Joyce, C. Kidd, E. J. Nelkin, S.
Sorooshian, J. Tan, and P. Xie, 2019: Algorithm Theoretical Basis Document (ATBD)
Version 06 NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE
Retrievals for GPM (IMERG). https://gpm.nasa.gov/sites/default/files/document_files/
IMERG_ATBD_V06.pdf.

Lutz, M, 2020: Python Changes 2014+. web page, https://learning-python.com/python-changes-
2014-plus.html.

Lutz, M., 2013: Learning Python, 5th edition. O'Reilly Media, Inc. [Available in hardcopy or
through http://safaribooksonline.com]

NASA: Global Precipitation Measurement. website, http://pmm.nasa.gov.
PPS, 2021: File Specification for GPM Products. NASA,

https://gpmweb2https.pps.eosdis.nasa.gov/pub/GPMfilespec/filespec.GPM.pdf.
PPS: Precipitation Processing System (PPS). homepage, NASA,

https://arthurhou.pps.eosdis.nasa.gov/.
PPS: STORM data ordering system. web site, NASA, http://storm.pps.eosdis.nasa.gov.
Python array library, http://www.numpy.org.
Python HDF5 library, http://www.h5py.org.

